614 research outputs found

    Early SPI/INTEGRAL contraints on the morphology of the 511 keV line emission in the 4th galactic quadrant

    Full text link
    We provide first constraints on the morphology of the 511 keV line emission from the galactic centre region on basis of data taken with the spectrometer SPI on the INTEGRAL gamma-ray observatory. The data suggest an azimuthally symmetric galactic bulge component with FWHM of ~9 deg with a 2 sigma uncertainty range covering 6-18 deg. The 511 keV line flux in the bulge component amounts to (9.9+4.7-2.1) 10e-4 ph cm-2 s-1. No evidence for a galactic disk component has been found so far; upper 2 sigma flux limits in the range (1.4-3.4) 10e-3 ph cm-2 s-1 have been obtained that depend on the assumed disk morphology. These limits correspond to lower limits on the bulge-to-disk ratio of 0.3-0.6.Comment: 5 pages, 3 figures, accepted for publication in A&

    The sky distribution of 511 keV positron annihilation line emission as measured with INTEGRAL/SPI

    Get PDF
    The imaging spectrometer SPI on board ESA's INTEGRAL observatory provides us with an unprecedented view of positron annihilation in our Galaxy. The first sky maps in the 511 keV annihilation line and in the positronium continuum from SPI showed a puzzling concentration of annihilation radiation in the Galactic bulge region. By now, more than twice as many INTEGRAL observations are available, offering new clues to the origin of Galactic positrons. We present the current status of our analyses of this augmented data set. We now detect significant emission from outside the Galactic bulge region. The 511 keV line is clearly detected from the Galactic disk; in addition, there is a tantalizing hint at possible halo-like emission. The available data do not yet permit to discern whether the emission around the bulge region originates from a halo-like component or from a disk component that is very extended in latitude.Comment: to be published in the proceedings of the 6th INTEGRAL Workshop "The Obscured Universe" (3-7 July 2006, Moscow

    The INTEGRAL/SPI response and the Crab observations

    Get PDF
    The Crab region was observed several times by INTEGRAL for calibration purposes. This paper aims at underlining the systematic interactions between (i) observations of this reference source, (ii) in-flight calibration of the instrumental response and (iii) the development and validation of the analysis tools of the SPI spectrometer. It first describes the way the response is produced and how studies of the Crab spectrum lead to improvements and corrections in the initial response. Then, we present the tools which were developed to extract spectra from the SPI observation data and finally a Crab spectrum obtained with one of these methods, to show the agreement with previous experiments. We conclude with the work still ahead to understand residual uncertainties in the response.Comment: 4 pages, 4 figures, Proc. of the 5th INTEGRAL Workshop (Feb. 16-20 2004), to be published by ES

    SPI Measurements of Galactic 26Al

    Full text link
    The precision measurement of the 1809 keV gamma-ray line from Galactic 26^{26}Al is one of the goals of the SPI spectrometer on INTEGRAL with its Ge detector camera. We aim for determination of the detailed shape of this gamma-ray line, and its variation for different source regions along the plane of the Galaxy. Data from the first part of the core program observations of the first mission year have been inspected. A clear detection of the \Al line at about 5--7 σ\sigma significance demonstrates that SPI will deepen \Al studies. The line intensity is consistent with expectations from previous experiments, and the line appears narrower than the 5.4 keV FWHM reported by GRIS, more consistent with RHESSI's recent value. Only preliminary statements can be made at this time, however, due to the multi-component background underlying the signal at \about 40 times higher intensity than the signal from Galactic 26^{26}Al.Comment: 5 pages, 8 figures; accepted for publication in A&A (special INTEGRAL volume

    SPI observations of the diffuse 60Fe emission in the Galaxy

    Full text link
    Gamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. The spectrometer SPI on board INTEGRAL has accumulated nearly three years of data on gamma-ray emission from the Galactic plane. We have analyzed these data with suitable instrumental-background models and sky distributions to produce high-resolution spectra of Galactic emission. We detect the gamma-ray lines from 60Fe decay at 1173 and 1333 keV, obtaining an improvement over our earlier measurement of both lines with now 4.9 sigma significance for the combination of the two lines. The average flux per line is (4.4 \pm 0.9) \times 10^{-5} ph cm^{-2} s^{-1} rad^{-1} for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.148 \pm 0.06. The current theoretical predictions are still consistent with our result.Comment: 10 pages, 7 figures, 2 tables, A&A in pres

    INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    Full text link
    The center of our Galaxy is a known strong source of electron-positron 511-keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| > 40 deg) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.Comment: Accepted for publication in the Astrophysical Journal. 13 pages, 3 figure

    Deep Learning for Brain Tumor Segmentation in Radiosurgery: Prospective Clinical Evaluation

    Full text link
    Stereotactic radiosurgery is a minimally-invasive treatment option for a large number of patients with intracranial tumors. As part of the therapy treatment, accurate delineation of brain tumors is of great importance. However, slice-by-slice manual segmentation on T1c MRI could be time-consuming (especially for multiple metastases) and subjective. In our work, we compared several deep convolutional networks architectures and training procedures and evaluated the best model in a radiation therapy department for three types of brain tumors: meningiomas, schwannomas and multiple brain metastases. The developed semiautomatic segmentation system accelerates the contouring process by 2.2 times on average and increases inter-rater agreement from 92.0% to 96.5%
    corecore